Nanooptics and photonics

Copper and Copper-Europium nanospecies embedded in quarts glass: spectral characterization

M. Ignatovych¹, M. Borysenko¹, L. Davydenko¹, M. Veres², L. Himics², M. Koos² and A. Kelemen³

Transition and RE ions proved to be very promising dopants for elaboration of multifunctional materials – effective photo-, X-ray- and thermoluminophors, scintillators and etc. Quite recently we reported on cerium and europium nanospecies in quarts glass [1]. Now we extended investigations and here we present spectral study on copper and copper-europium nanospecies in quarts glass.

The set of samples with different content of Cu (0.025-0.05 wt %) and Eu (0.01-0.05 wt %) which denoted as Cu/SiO₂ and Cu,Eu/SiO₂ were prepared using modified sol-gel method [1]. The main results received in the study:

- i UV-vis absorption spectra of Cu/SiO_2 and Cu,Eu/SiO_2 consist of two kinds of bands very intensive and broad bands in the range of 220-250 nm and the next ones 290-300 nm. The first kind of bands were attributed to CT transition O^{2-} $\rightarrow \text{Cu}^{2+}$ ions while the next ones we assigned as transition $3d^94s \rightarrow 3d^{10}$ of Cu^{1+} ions.
- ii Photoluminescence (excitation-emission) spectra of Cu/SiO_2 and $Cu,Eu/SiO_2$ display bands in the range of 250-350 nm and 500-560 nm, respectively, which are caused by $3d^94s \leftarrow 3d^{10}$ of site-dependent Cu^{1+} ions.
- iii Photoluminescence (excitation-emission) spectra of Eu/SiO₂ and Cu,Eu/SiO₂ exhibited fine line structure arising from $^5D_0 \rightarrow ^7F_n$ manifolds (570–750 nm) of Eu³⁺ ions. Domination of the $^5D_0 \rightarrow ^7F_2$ transition in the spectra clearly points on low site symmetry of Eu³⁺ ions.
 - 1. Ignatovych M., Borysenko M., Davydenko L., Borysenko L., Veres M., Himics L., Koos M. Cerium and europium nanospecies in quartz glass: synthesis and spectral study // Mat.-wiss. u. Werkstofftech.-2016.-47(2-3). P. 193-197.

¹ Chuiko Institute of Surface Chemistry of NAS of Ukraine, General Naumov Str., 17, Kyiv-03164, Ukraine. E-mail: ignatovych@ukr.net

² Institute of Solid State Physics and Optics HAS, P.O. Box 49, 1525, Budapest, Hungary

³ Center for Energy Research HAS, P.O. Box 49, 1525, Budapest, Hungary